RAO EDU Material Physik
Radioaktiviät
letzte Seite
end
Naturwissenschaften Radioaktiviät
Kohlenstoff-Isotope 12C und 13C Vom "Wiegen" der Atome mit Elektronen 2016
Naturwissenschaften Weitere Informationen
Weitere Informationen
Naturwissenschaften und Technik
Radiokarbonmethode zur Altersbestimmung
Kohlenstoff-Isotope 12C und 13C

Vom "Wiegen" der Atome mit Elektronen

Die chemischen Eigenschaften von Atomen werden durch die Anzahl der Protonen in deren Kern bestimmt. Dementsprechend werden Atome im Periodensystem der Elemente angeordnet. Jedoch können selbst chemisch identische Atome eine unterschiedliche Masse aufweisen - diese Varianten nennt man Isotope. Obwohl Verfahren zur Messung solcher Massenunterschiede existieren, haben diese nicht deren exakte Position in einer Probe verraten oder nach sehr speziellen Messinstrumenten und einer aufwendigen Aufbereitung der Proben verlangt. Im renommierten Open Access Journal "Nature Communications" veröffentlichen Physiker um Toma Susi von der Universität Wien nun eine neue Methode zum "Wiegen" von Atomen mittels hochaufgelöster bildgebender Verfahren an Graphen, der nur Ein-Atom-dicken Schicht von Kohlenstoff.

Publikation
RAOnline Download
Neue Methode zum "Wiegen" von Atomen mittels hochaufgelöster bildgebender Verfahren an Graphen
Vom "Wiegen" der Atome mit Elektronen
750 KB PDF Download
Quelle: Universität Wien
Kohlenstoffe

Die verschiedenen, natürlich vorkommenden chemischen Elemente haben jedes für sich ganz eigene, spezifische Isotope. Bei Kohlenstoff kommen auf jedes stabile Kohlenstoff-Isotop 13C neunundneunzig Atome des leichteren stabilen Kohlenstoff-Isotops 12C, welches ein Neutron weniger im Kern aufweist. Abgesehen von diesen natürlichen Variationen kann Materie aus mit Isotopen angereicherten chemischen Stoffen gezüchtet werden. Das ermöglicht den WissenschafterInnen zu untersuchen, wie sich Atome zu Festkörpern anordnen, um z.B. ihre Synthese zu verbessern. Die meisten traditionellen Methoden zur Messung der Isotopenanteile erfordern jedoch die Zerstörung einer grösseren Menge der Probe oder sind auf eine Auflösung von hunderten Nanometer beschränkt, wodurch wichtige Details verschleiert bleiben.

In ihrer neuen Studie unter der Leitung von Jani Kotakoski haben Forscher der Universität Wien das hochentwickelte Rastertransmissionselektronenmikroskop Nion UltraSTEM100 eingesetzt, um Isotope auf Nanometer-kleinen Flächen einer Graphen-Probe zu messen. Dieselben energetischen Elektronen, die ein Bild der Graphenstruktur entstehen lassen, können auch je ein Atom herausschlagen, indem sie am Kohlenstoffkern abgelenkt werden. Da das 13C-Isotop eine grössere Masse hat, kann ein Elektron einem 12C-Atom einen geringfügig kräftigeren Stoss versetzen und es so einfacher herausschlagen. Wie viele Elektronen im Durchschnitt dafür nötig sind, lässt die lokale Isotopenkonzentration abschätzen. "Der Schlüssel zum Erfolg war die Kombination präziser Experimente mit einem verbesserten theoretischen Modell des Prozesses", so Toma Susi, Erstautor der Studie.

Die Publikation in Nature Communications ermöglichte es dem Team, der Idee von Open Science voll gerecht zu werden. Zusätzlich zur Veröffentlichung der Gutachten ihrer KollegInnen wurde neben ihrem eigentlichen Forschungsartikel eine umfangreiche Beschreibung der Methoden und Analysen beigefügt. Die Wissenschafter gingen sogar noch einen Schritt weiter und haben ihre mikroskopischen Daten auf den internetbasierten Speicherdienst figshare hochgeladen. JedeR mit einer Internetverbindung kann somit auf die Gigabyte an hochaufgelösten Bildern frei zugreifen, diese verwenden und zitieren. Toma Susi fährt fort: "Meines Wissens ist dies das erste Mal, dass elektronen-mikroskopische Daten auf dieser Skala offen geteilt werden."

Die Ergebnisse zeigen, dass moderne hochaufgelöste Elektronenmikroskope zwischen verschiedenen Kohlenstoff-Isotopen unterscheiden können. Obwohl diese Methode soweit nur für Graphen demonstriert wurde, ist es prinzipiell möglich, sie auf andere zweidimensionale Materialien auszuweiten. Dazu haben die Wissenschafter eine Patentanmeldung auf die neue Methode eingereicht. "Moderne Mikroskope erlauben uns schon jetzt alle atomaren Abstände in Festkörpern aufzulösen und zu sehen, aus welchen chemischen Elementen diese bestehen. Nun können wir Isotope zu dieser Liste hinzufügen", fasst Jani Kotakoski abschliessend zusammen.

Finanzielle Unterstützung vom Fonds zur Förderung der wissenschaftlichen Forschung (FWF), dem Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF), und dem European Research Council (ERC) hat direkt zur Durchführung dieser Forschung beigetragen.

Publikation in Nature Communications:
Isotope analysis in the transmission electron microscope: Toma Susi, Christoph Hofer, Giacomo Argentero, Gregor T. Leuthner, Timothy J. Pennycook, Clemens Mangler, Jannik C. Me yer & Jani Kotakoski. Nature Communications | 7:13040 |
DOI: 10.1038/ncomms13040.

Offene Daten:
Atomic resolution electron irradiation time series of isotopically labeled monolayer graphene: Toma Susi, Christoph Hofer, Giacomo Argentero, Gregor T. Leuthner, Timothy J. Pennycook, Clemens Mangler, Jannik C. Meyer & Jani Kotakoski. figshare (2016).
DOI: 10.6084/m9.figshare.c.3311946.v1

Quelle: Text Universität Wien, 11. Oktober 2016
Isotop (gr: isos = gleich, topos = gleicher Ort)

Als Isotope werden Atome bezeichnet, welche die gleiche Elektronen- und Protonenzahl haben, sich aber in der Anzahl ihre Neutronen unterscheiden. Diese Atome zeigen gleiche chemische Eigenschaften. Ihre Atommassenzahlen sind jedoch unterschiedlich. Isotope stehen daher an derselben Stelle im Periodensystem der Elemente.

Viele Elemente sind Mischungen verschiedener Isotopenarten (Bsp.: Kohlenstoff mit dem bekanntesten Isotop 14C, 14 = Atommassenzahl). Diese Elemente sind als Mischelemente ein Isotopengemisch. Reinelemente wie Fluor, Natrium bestehen aus nur einer Atomart. Sie enthalten keine Isotope.

Lumineszenzdatierung

Bei Lumineszenzdatierungen werden Mineralien auf gespeichertes Licht untersucht und so datiert.

Petrefakt

Versteinerungen von Tieren und Pflanzen (= Fossilien) werden Petrefakte genannt.

Uran-Thorium-Methode

Die Uran-Thorium-Methode beruht darauf, dass Anteile von Uran und Thorium in den Proben mit den Anteilen zur Zeit der Entstehung der Petrefakte oder Gesteine ins Verhältnis gesetzt werden. Dabei werden die Halbwertszeiten des Zerfalls dieser beiden radioaktiven Metalle berücksichtigt (siehe auch: Radiokarbonmethode).

Jahrringforschung (Dendrochronologie)
Jahrringe von Bäumen mit Fälldatum 2012
Subfossiler Wald
Neuseeland - Rekonstruktion der globalen Klimageschichte
Kohlenwasserstoffe Treibhausgas Kohlendioxid
Kohlenstoffisotope Kohlenstoff
Aufbau der Materie Atommodelle

nach oben

Weitere Informationen
Subfossiler Wald
Magnetische Monopole auf Wanderschaft
Erlebnis Naturwissenschaften
Links
Externe Links
Universität Wien
end
letzte Seite