Krankheiten - Seuchen
Malaria
vorangehende Seite
end
Gesundheit und Kranheiten Malaria
Uni Bern Durchbruch in der Malariaforschung 2019
Gesundheit Weitere Informationen
Weitere Informationen
Links
Gesundheit & Soziales Geografie-Erdkunde Klima
Malaria
Durchbruch in der Malariaforschung

Eine internationale Forschungsgruppe um den Zellbiologen Volker Heussler von der Universität Bern hat hunderte genetische Schwachstellen des Malaria-Parasiten Plasmodium identifiziert. Diese sind in der Medikamenten- und Impfstoffentwicklung dringend erforderlich, um die Krankheit dereinst ausrotten zu können.

Trotz grosser Anstrengungen in Medizin und Wissenschaft, sterben weltweit immer noch mehr als 400'000 Menschen an Malaria. Die Infektionskrankheit wird durch den Stich von Moskitos übertragen, die den Malariaparasiten Plasmodium in sich tragen. Das Genom des Parasiten - also das gesamte Erbgut - ist mit etwa 5'000 Genen relativ klein. Im Gegensatz zu menschlichen Zellen verfügen Plasmodium-Parasiten zudem von jedem Gen jeweils über nur eine einzelne Kopie. Wenn man aus dem gesamten Erbgut des Parasiten ein Gen entfernt, führt dies deshalb direkt zu einer Veränderung. Ein internationales Konsortium unter der Leitung der Professoren Volker Heussler vom Institut für Zellbiologie (IZB) der Universität Bern und Oliver Billker vom Sanger-Institut in Grossbritannien hat sich diese Tatsache zunutze gemacht. Erstmals haben die Forschenden eine sogenannte genomweite Gendeletionsstudie beim Malariaparasiten durchgeführt: Die Forschenden entfernten gezielt über 1'300 einzelne Gene, beobachteten die Auswirkungen auf den Parasiten in dessen gesamten Lebenszyklus und konnten so Schwachstellen des Erregers identifizieren. Die Ergebnisse wurden im renommierten Fachjournal Cell publiziert.

Individuelle genetische Codes beschleunigen Forschung um Jahrzehnte

Für die Untersuchungen griffen die Forschenden auf ein Malaria-Mausmodell zurück, das am Institut für Zellbiologie der Universität Bern etabliert ist. Jedes der 1'300 Parasitengene wurde durch einen individuellen genetischen Code ersetzt, um anschliessend verfolgen zu können, wie sich das Entfernen der einzelnen Gene auf den Parasiten auswirkt. Die Verwendung individueller Codes ermöglicht es, viele Parasiten gleichzeitig zu untersuchen und damit die Jahrzehnte lange Arbeit an einzelnen Genen drastisch zu verkürzen. Dem internationalen Konsortium gelang es nach dreijähriger Forschung, das Genom des Parasiten systematisch in allen Lebensphasen zu durchforsten. «Im gemeinsam mit dem Sanger-Institut durchgeführten Deletionsexperiment konnten wir gleichzeitig hunderte Schwachstellen identifizieren, vor allem im Stoffwechsel des Parasiten», so Rebecca Stanway, eine der führenden Wissenschaftlerinnen dieses Projekts aus der Berner Gruppe.

Modellberechnungen helfen, Angriffsziele zu bestimmen

Um Ordnung in die Vielzahl der identifizierten Stoffwechselgene zu bringen, haben sich die Berner Forschenden mit der Gruppe von Professor Vassily Hatzimanikatis von der EPFL in Lausanne und der Professorin Dominique Soldati-Favre von der Universität Genf zum Konsortium «MalarX» zusammengeschlossen, das vom Schweizerischen Nationalfonds finanziell unterstützt wird. Mit den Daten des Malaria-Genom-Screens hat die Arbeitsgruppe an der EPFL Modelle berechnet, die essenzielle Stoffwechselwege des Parasiten aufzeigen. «Dank diesen Modellen können Vorhersagen erstellt werden, welche der bisher noch nicht erforschten Gene für den Parasiten lebenswichtig sind und sich somit als Ziele für die Malariabekämpfung eignen.» sagt die Modell-Expertin Anush Chiappino-Pepe von der EPFL in Lausanne.

Einige dieser Vorhersagen wurden dann von den Berner Forschenden in enger Zusammenarbeit mit der Arbeitsgruppe von Chris Janse an der Universität Leiden in den Niederlanden experimentell bestätigt. «Der genomweite Screen mit den dazugehörigen Stoffwechselmodellen bedeutet einen Durchbruch in der Malariaforschung», sagt Magali Roques aus der Berner Gruppe. «Unsere Ergebnisse werden weltweit viele Malariaforscherinnen und -forscher unterstützen. Sie können sich bei ihrer Arbeit nun auf die für den Parasiten überlebensnotwendigen Gene zu konzentrieren und so effiziente Medikamente und Impfstoffe gegen verschiedene Lebensstadien des Parasiten entwickeln.» fügt Ellen Bushell, ehemalige Wissenschaftlerin am Sanger-Institut hinzu.

Erfolg dank Spitzen-Infrastruktur und internationaler Kooperation

Dieser Forschungsansatz ist gemäss Volker Heussler nur durch eine Kombination der enormen Sequenzier- und Klonierungskapazitäten am Sanger-Institut und der ausserordentlichen Infrastruktur am IZB in Bern möglich gewesen. Am IZB sind sämtliche Lebensphasen des Malaria-Parasiten vorhanden, was weltweit nur in wenigen anderen Instituten der Fall ist. Zudem verfügt das IZB über eine ausserordentliche Ausstattung mit Hochleistungsmikroskopen, die eine bahnbrechende Forschung an den verschiedenen Lebensstadien des Parasiten ermöglichen. Dank dieser Voraussetzungen publizierte das Labor von Volker Heussler bereits viele international anerkannte Studien zur Frühphase der Parasiteninfektion.

Insgesamt waren 22 internationale Wissenschaftlerinnen und Wissenschaftlern aus den Bereichen Molekularbiologie, Parasitologie, Statistik und mathematische Modellierung an der Studie beteiligt. «Das verdeutlicht den Aufwand, um ein solches Projekt erfolgreich durchzuführen, die Daten zu analysieren sowie die experimentellen Erkenntnisse in einen sinnvollen Zusammenhang zu bringen», so Volker Heussler.

Publikationsangaben:

Stanway et al. Genome Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage. Cell 14th of November 2019, doi: 10.1016/j.cell.2019.10.030

Bushell et al. Functional Profiling of a Plasmodium Genome reveals an abundance of essential genes. Cell 13 July 2017 doi: 10.1016/j.cell.2017.06.030

Quelle: Text Universität Bern, 14. November 2019
 
Erbfaktoren - Gene - DNA

Zu den Hauptbestandteilen eines Zellkerns gehören die «Nukleoproteide». «Nukleoproteide» sind Substanzen, die aus «Nukleinsäuren» und einem Protein (Eiweiss) bestehen. Die «Nukleinsäuren» steuern die Bildung der Enzyme in den Zellen. Sie sind damit die Träger der «Erbfaktoren = Gene = Genome». Eine wichtige «Nukleinsäuren» ist die «Desoxyribonukleinsäure (DNS)». Die DNS wird auch DNA (engl. A = Acid = Säure) genannt. Die DNS ist in den Chromosomen lokalisiert. Bei der Zellkernteilung werden die Chromosomen längs geteilt. Jeder der geteilten Zellkerne enthält jeweils die Hälfte jedes einzelnen Chromosoms.

Die DNA enthält den gesamten Bauplan eines Organismus. Aufgrund dieser Anleitung weiss jede Zelle, wie sie sich entwickeln und welche Aufgabe sie erfüllen muss.

Die Chromosomen (griech: Farbkörper) befinden sich in den Zellen von Lebewesen. Der wichtigste Bestandteil der Chromosomen ist bei den meisten Lebewesen die «Desoxyribonucleinsäure (DNS). Die Chromosomen sind die Träger der Erbanlagen. Die Reihenfolge der Gene in den Chromosomen ist ein wichtiger Indikator für die Identität eines Lebewesens.
Malaria in Afrika Malaria in Westafrika
Gesundheit Krankheiten in der Tropischen Zone
Malaria «World Malaria Report 2018» 2018
Rätsel um Malaria-Parasit gelöst 2018
Neu entwickelter Malariaimpfstoff in einer Testphase in Afrika 2019

nach oben

Weitere Informationen
line
Malaria - Eine tropische Krankheit
Westafrika: Wassermanagement
Westafrika: Toiletten für alle Klima der tropischen Zone
Subtropen: Klimadiagramme
UNEP Karten Afrika
Bilder
Videos Länder-Informationen Karten Klima

nach oben

Links
line
Externe Links
Universität Bern Institut für Zellbiologie der Universität Bern
vorangehende Seite