Naturwissenschaften
Weltraum - Raumfahrt
European Space Agency ESA
Kometen
vorangehende Seite
end
Weltraum Kometen
«Philae» entdeckt September 2016
Philaes zweiter Aufsetzpunkt an totenkopfförmigem Kamm entdeckt 2020
Raumfahrt - Weltraum Weitere Informationen
RAOnline Astronomie- Weltraum
Weitere Informationen
Naturwissenschaften und Technik Weltraum
ESA-Kometensonde «Rosetta»
Kometenlander Philae entdeckt

Der Kometenlander Philae ist gefunden. Am 2. September 2016 nahm die OSIRIS-Kamera auf der Raumsonde Rosetta die entscheidenden Bilder von der Oberfläche des Kometen 67P/Churyumov-Gerasimenko auf. Sie zeigen den Lander schräg in einer Schlucht liegend, zwei der drei Landebeine deutlich sichtbar. "Jetzt haben wir endlich das Gesamtbild von Philae", sagt Dr. Koen Geurts vom Philae-Kontrollzentrum im Deutschen Zentrum für Luft- und Raumfahrt (DLR) in Köln. "Schon auf den ersten Blick erkennt man, dass wir Glück gehabt haben, denn zehn Meter weiter in der Schlucht hätte Philae vermutlich kein Sonnenlicht mehr gesehen." Die Wissenschaftler des Philae-Kontrollzentrums haben bereits begonnen, den Verlauf der Landung und den Betrieb des Landers im Spiegel der neuen Bilder zu analysieren. "Wir sind gespannt herauszufinden, wie genau der nun bekannte Landeort die Funktion des Landers und den Funkkontakt beeinflusste", so Geurts weiter.

Auch die bisherigen wissenschaftlichen Ergebnisse können mitPhilaes genauem Landeort besser analysiertwerden. "Wie wir es bereits in Bildausschnitten der Landerkamera sehen konnten, steht Philae sehr im Schatten nah an einer Felswand", erläutert Dr. Ekkehard Kührt, Planetenforscher am DLR und Mitglied des OSIRIS-Teams. "Nun mit den neuen OSIRIS-Bildern können wir den Sonnenstand bei unseren Experimenten zurückverfolgen und beispielsweise Temperaturmessungen besser interpretieren." Auch Prof. Tilman Spohn, Leiter des DLR Instituts für Planetenforschung und des Teams der Thermalsonde MUPUS freut sich: "Das ist eine grossartige Leistung des OSIRIS Teams und ein Meilenstein für die Weltraumfahrt! Wir wollen jetzt sehen, worauf wir mit MUPUS gehämmert haben und die Interpretation unserer Infrarotmessungen verbessern."

Schon zuvor war Philae oberhalb eines Kraterrandes direkt auf dem Kopf des entenförmigen Kometen vermutet worden. Doch bisherige Bilder zeigten nur einzelne Pixel, die auf Philae hindeuten konnten. Die aktuellen Bilder wurden mit einer grösseren Auflösung von fünf Zentimetern pro Pixel in geringerem Abstand von nur 2,7 Kilometern zum jetzt weniger aktiven Kometen aufgenommen und zeigen nun eindeutig den mit einem Meter Durchmesser sehr kleinen Philae. "Es war extrem schwierig, den Lander in dem unebenen, dunklen Gelände zu orten und mit Sicherheit zu bestätigen", ergänzt Kührt. "Wir sind glücklich und gerührt, dass es nun doch noch in den letzten Tagen vor dem Ende der Rosetta-Mission am 30. September gelungen ist."

Landeplatz mit Schatten und Kälte

Zwei Stunden dauerten am 12. November 2014 die Hüpfer, mit denen Philae von seinem ursprünglichen Landeplatz Agilkia zu seinem etwa einen Kilometer entfernten heutigen Landeplatz Abydos flog. Die Harpunen, mit denen Philae sich hätte verankern sollen, feuerten nicht - und die Eisschrauben in seinen Füssen konnten das Landegerät nicht ausreichend befestigen. Für das Team im DLR-Kontrollraum fing nach der spektakulären Landung die Arbeit erst richtig an: Fast 60 Stunden betrieben sie den Lander, kommandierten seinezehn Instrumente an Bord und drehten ihn am Ende auch noch in Richtung Sonnenstrahlen. Schon damals wusste man: Dort, wo er nun steht, ist es sehr schattig und kalt. Die Sonne erreichte den Lander an jedem 12,4-Stunden-Kometentag nur für knapp anderthalb Stunden. Die Thermalsonde MUPUS versuchte, sich in den Kometen zu hämmern, stiess auf eine harte Eisschicht und konnte Temperaturen bis unter minus 180 Grad Celsius messen. Die Aufnahmen der ROLIS- sowie der CIVA-Kamera zeigten uns ausserdem eine eher zerklüftete, schattige Umgebung, die mit den neuen OSIRIS-Bildern nun aus einer anderen Perspektive bestaunt werden kann.

Die Mission

Rosetta ist eine Mission der ESA mit Beiträgen von ihren Mitgliedsstaaten und der NASA. Rosettas Lander Philae wird von einem Konsortium unter der Leitung von DLR, MPS, CNES und ASI beigesteuert.

Die Kamera OSIRIS wurde von einem Konsortium gebaut unter der Leitung des Max-Planck-Instituts für Sonnensystemforschung (Deutschland) in Zusammenarbeit mit CISAS, Universität Padova (Italien), dem Laboratoire d'Astrophysique de Marseille (Frankreich), dem Instituto de Astrofísica de Andalucia, CSIC (Spanien), ESAs Scientific Support Office, dem Instituto Nacional de Técnica Aeroespacial (Spanien), der Universidad Politéchnica de Madrid (Spanien), des Department of Physics and Astronomy of Uppsala University (Schweden) und dem Institute of Computer and Network Engineering der TU Braunschweig (Deutschland). OSIRIS wurde finanziell gefördert durch die nationalen Agenturen von Deutschland (DLR), Frankreich (CNES), Italien (ASI), Spanien (MEC) und Schweden (SNSB) sowie dem ESA Technical Directorate.

Quelle: Text DLR, 5. September 2016

nach oben

Philaes zweiter Aufsetzpunkt an totenkopfförmigem Kamm entdeckt

Nach Jahren akribischer Detektivarbeit ist der zweite Aufsetzpunkt des Rosetta-Landers Philae auf dem Kometen 67P/Tschurjumow-Gerassimenko ausgemacht worden - an einem Ort, der eine totenkopfähnliche Form aufweist. Philae hat seinen Abdruck in Eis, das Milliarden von Jahren alt ist, hinterlassen und offenbart, dass das eisige Innere des Kometen weicher als aufgeschäumte Milch ist.

Detektivarbeit

Philae stieg am 12. November 2014 auf die Kometenoberfläche herab. Der Lander prallte vom ursprünglichen Aufsetzpunkt Agilkia ab und flog zunächst zwei Stunden lang weiter. Während dieser Zeit kollidierte er mit dem Rand einer Klippe und taumelte in Richtung eines zweiten Aufsetzpunktes. Schliesslich stoppte Philae endgültig in Abydos, einem geschützten Ort, der erst 22 Monate später durch die Auswertung der von Rosetta aufgenommenen Bilder identifiziert werden konnte - nur wenige Wochen vor dem Abschluss der Rosetta-Mission.

Laurence O'Rourke von der ESA, der bereits eine führende Rolle beim ursprünglichen Auffinden von Philae gespielt hatte, war fest entschlossen, auch den bis dato unentdeckten zweiten Aufsetzpunkt zu bestimmen.

"Philae hatte uns noch ein allerletztes Rätsel aufgegeben", sagt O'Rourke. "Es war sehr wichtig, den Landeplatz zu identifizieren, denn die an Philae angebrachten Sensoren zeigten an, dass der Lander sich in die Oberfläche hineingegraben und so höchstwahrscheinlich das darunter liegende, urzeitliche Eis freigelegt hatte. Das hätte uns einen ausserordentlich wertvollen Zugang zu einer Materie, die Milliarden von Jahren alt ist, ermöglicht."

Zusammen mit einem Team aus Missionswissenschaftlern und Ingenieuren machte O'Rourke sich daran, Daten von Rosetta- wie von Philae-Instrumenten zusammenzubringen - um den bis dato unbekannten Aufsetzpunkt zu finden und zu bestätigen.

Der Star der Show

Obwohl eine helle Stelle aus "Eisscheiben", die auf hochauflösenden Aufnahmen von Rosettas OSIRIS-Kamera zu erkennen war, bereits entscheidend bei der Bestätigung des gesuchten Ortes geholfen hatte, stellte sich bald heraus, dass der Ausleger des Philae-Magnetometers ROMAP der eigentliche Star der Show war. Das Instrument wurde für die Vermessung von Magnetfeldern in der lokalen Umgebung des Kometen entwickelt. Für die neue Analyse betrachtete das Team allerdings die Veränderungen in den aufgezeichneten Daten, die zu erkennen waren, als sich der Ausleger - der 48 Zentimeter aus dem Lander herausragt - beim Aufprall auf die Oberfläche physisch bewegt hatte. Diese Bewegungen manifestierten sich in den magnetischen Daten in einer charakteristischen Abfolge von Ausschlägen. Die Bewegungen des Auslegers wurden mit den Bewegungen des Landers an sich abgeglichen. So konnte geschätzt werden, wie lange die Einschläge von Philae in das Eis angedauert hatten. Darüber hinaus konnten die Daten genutzt werden, um die Bestimmung der Beschleunigung von Philae während dieser Kontakte einzuschränken.

Die ROMAP-Daten wurden mit den vom Rosetta-RPC-Magnetometer zu denselben Zeitpunkten aufgezeichneten Daten kreuzkorreliert, um die Fluglage von Philae zu bestimmen und etwaige Einflüsse des Magnetfelds der Plasmaumgebung um den Kometen herum auszuschliessen.

"Wir hatten es nicht geschafft, 2014 alle geplanten Messungen mit Philae durchzuführen. Deshalb ist es wirklich faszinierend, die Magnetometer-Aufzeichnungen in dieser Art zu nutzen, und Daten sowohl von Rosetta als auch von Philae miteinander zu kombinieren - und zwar auf eine Weise, die so niemals geplant gewesen war. Und am Ende haben wir dadurch diese wundervollen Ergebnisse erhalten", sagt Philip Heinisch, der die Analyse der ROMAP-Daten leitete.

Eine erneute Analyse der Landedaten hat ergeben, dass Philae fast zwei ganze Minuten am zweiten Aufsetzpunkt verbrachte und es dabei zu mindestens vier unterschiedliche Kontakten kam, während er über die Kometenoberfläche hindurchpflügte. Ein besonders deutlicher Abdruck, der auf den Bildern zu sehen ist, war entstanden, als Philaes Oberseite 25 Zentimeter tief in das Eis neben einer Spalte einsank und dabei erkennbare Spuren des Bohrers und der Seiten der Sonde hinterliess. Die Ausschläge in den Magnetfelddaten, die von der Bewegung des Auslegers rühren, zeigen, dass es drei Sekunden lang dauerte, bis Philae diese eine Einsenkung geschaffen hatte.

Totenkopfgesicht

"Als ich die Felsbrocken, auf die Philae aufgeprallt ist, von oben sah, erinnerte mich ihre Form an einen Totenkopf. Deshalb habe ich die Region 'Totenkopf-Kamm' genannt und dieses Motiv auch für weitere Charakteristika, die ich beobachtete, benutzt", sagt O'Rourke.

"Das rechte 'Auge' des 'Totenkopfgesichts' stammt von Philaes Oberseite, die den Staub komprimiert hat. Die Lücke zwischen den Felsbrocken ist die 'obere Totenkopf-Spalte', wo Philae wie eine Windmühle fungierte, um zwischen ihnen hindurchzurasen."

Die Analyse der Bilder und Daten von OSIRIS und dem Rosetta-Spektrometer VIRTIS bestätigte, dass es sich bei dem hellen Gebiet auf den Aufnahmen um Wassereis handelt. Dieses bedeckt eine Fläche von etwa 3,5 Quadratmetern. Zum Zeitpunkt der Landung lagen grosse Teile des Eises im Schatten, aber als die Bilder Monate später aufgenommen wurden, schien die Sonne direkt auf das Gebiet - das wie ein Leuchtfeuer erstrahlte. Das Eis war heller als die umliegende Region, da es zuvor nicht der Weltraumumgebung und damit auch nicht der Weltraumverwitterung ausgesetzt gewesen war.

"Das Eis erschien wie ein helles Licht in der Dunkelheit", sagt O'Rourke und fügt hinzu, dass es sich nur 30 Meter von dem Ort entfernt befindet, an dem Philae letztendlich auf der Kometenoberfläche aufgenommen wurde.

Milchschaum

Doch die Studie stellt nicht nur den aufregenden Abschluss der Suche nach dem zweiten Aufsetzpunkt dar, sondern lieferte auch die erste In-situ-Messung des weichen Eis-Staub-Kerns eines Felsbrockens auf einem Kometen.

"Philae hat einen Abdruck neben der Spalte hinterlassen - dieser Ereignis war simpel in seiner Art, erlaubte uns aber dennoch, herauszuarbeiten, dass dieses urzeitliche, Milliarden von Jahren alte Eis-Staub-Gemisch aussergewöhnlich weich ist. Es ist weicher als Milchschaum auf einem Cappuccino, Badeschaum oder die Gischt von sich brechenden Wellen", fügt O'Rourke hinzu.

Die Untersuchung ermöglichte ausserdem die Schätzung der Porosität des Felsbrockens, also wie viel Hohlraum sich zwischen den eisigen Staubkörnern im Inneren befindet. Diese wurde auf etwa 75 % geschätzt, was dem Wert entspricht, der zuvor, in einer separaten Studie, für den gesamten Kometen gemessen worden war. Dieselbe Studie hatte gezeigt, dass das Innere des Kometen gänzlich homogen ist, und zwar auf sämtlichen Grössenskalen, bis auf etwa 1 Meter hinunter. Das impliziert, dass man die Felsbrocken als Stellvertreter für den Gesamtzustand des Kometeninneren - zu der Zeit, in der er sich gebildet hat, also vor etwa 4,5 Milliarden Jahren - betrachten kann.

"Dieses fantastische Multi-Instrument-Ergebnis schliesst nicht nur die Lücken in der Geschichte von Philaes holpriger Reise, sondern bietet uns auch Informationen über die Eigenschaften des Kometen", sagt Matt Taylor, Rosetta-Projektwissenschaftler bei der ESA. "Die Stärke eines Kometen zu verstehen, ist besonders wichtig für zukünftige Landermissionen. Dass der Komet ein solch schaumiges Inneres hat, ist eine überaus wichtige Angabe für das Entwickeln von Landemechanismen, aber auch für die mechanischen Prozesse, die wir zum Entnehmen von Proben benötigen."

Hinweis:
"The Philae lander reveals low-strength primitive ice inside cometary boulders" von O'Rourke et al. wird in der Fachzeitschrift Nature veröffentlicht.

Für die Studie wurden Daten der Rosetta-Instrumente OSIRIS, VIRTIS und RPC-MAG sowie des Philae-Instruments ROMAP genutzt. Daten des Rosetta-Instruments MIRO wurden ebenfalls geprüft, aber der Fussabdruck des Instruments war zu breit, um schlüssige Aussagen für diese Untersuchung ableiten zu können. Unerlässlich für das Erstellen einer 3D-Perspektive der Region waren "Formmodelle", die die Topografie in höherer Auflösung als bis zum Zeitpunkt der Landung verfügbar gewesen war, detailliert darstellten, ebenso wie eine neue Modellierung der Philae-Flugbahn.

Die erneute Analyse der ROMAP-Daten zeigt, dass der erste Kontakt am zweiten Aufsetzpunkt um 17:23:48 GMT stattgefunden hat, also etwa 1,5 Minuten früher als zuvor berichtet worden war. Die zunächst gemeldete Zeit entspricht dem Zeitpunkt, zu dem Philae den stärksten Kontakt zur Oberfläche hatte, doch man weiss nun, dass Philae während des zweiten Aufsetzens offenbar mehrmals auf der Oberfläche auftraf und etwa zwei Minuten am Aufsetzpunkt verblieb.

Die Europäische Weltraumorganisation (ESA) ist das Tor Europas zum Weltraum.

Sie ist eine 1975 gegründete zwischenstaatliche Organisation, deren Aufgabe darin besteht, europäische Raumfahrtkapazitäten zu entwickeln und sicherzustellen, dass die Investitionen in die Raumfahrt den Bürgern in Europa und weltweit zugutekommen.

Die ESA hat 22 Mitgliedstaaten: Österreich, Belgien, die Tschechische Republik, Dänemark, Estland, Finnland, Frankreich, Deutschland, Griechenland, Ungarn, Irland, Italien, Luxemburg, die Niederlande, Norwegen, Polen, Portugal, Rumänien, Spanien, Schweden, die Schweiz und das Vereinigte Königreich. Slowenien und Lettland sind assoziierte Mitglieder.

Die ESA arbeitet förmlich mit sechs anderen EU-Mitgliedstaaten zusammen. Kanada nimmt im Rahmen eines Kooperationsabkommens an bestimmten ESA-Programmen teil.

Quelle: Text ESA, 28. Oktober 2020
Touchdown! Rosettas Landegerät Philae setzt auf Kometen auf
VIRTIS (Visible, InfraRed and Thermal Imaging Spectrometer)

VIRTIS (Visible, InfraRed and Thermal Imaging Spectrometer) ist das visuell-infrarote Spektrometer an Bord der ESA-Sonde Rosetta. Es wird Informationen zur Zusammensetzung des Kometenkerns liefern unddie Verteilung des Materials an der Oberfläche sowie der Gase und Moleküle in der Koma kartieren.

VIRTIS wurde von einem Konsortium unter der wissenschaftlichen Leitung des Istituto di Astrofisica ePlanetologia Spaziali of INAF in Rom (Italien) gebaut, das auch den wissenschaftlichen Betrieb leitet. Zum Konsortium gehören das Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique of the Observatoire in Paris (Frankreich) und das Institut für Planetenforschung des DLR (Deutschland).

Die Entwicklung des Instruments wurde gefördert und koordiniert durch die nationalen Raumfahrtagenturen: Agenzia Spaziale Italiana (ASI, Italien), Centre National d'Études Spatiales (CNES, Frankreich) und des Deutschen Zentrums für Luft- und Raumfahrt (DLR, Deutschland). Die Unterstützung durch das Rosetta Science Operations Centre und das Rosetta Mission Operations Centre wird dankend gewürdigt.

nach oben

Weitere Informationen
ESA Kometen: Rosetta-Mission
ESA Kometen: Rosetta 04.03.2005
NASA New Horizons am Rand des Sonnensystems
ESA Kometen: Rosetta 26.02.2004
Asteroiden: (2867) Steins
Planeten unseres Sonnensystems
NASA Deep Impact
Sonnensystem 8 Planeten NASA Stardust
Asteroiden Kometen
Links
Externe Links
deutsch deutsch
Deutsches Zentrum für Luft- und Raumfahrt (DLR) Max-Planck-Gesellschaft
DLR Rosetta Universität Bern Rosina
english english
ESA Portal
ESA Rosetta Mission
top
vorangehende Seite